
J
H
E
P
0
4
(
2
0
0
6
)
0
2
2

Published by Institute of Physics Publishing for SISSA

Received: July 22, 2005

Revised: February 16, 2006

Accepted: March 17, 2006

Published: April 11, 2006

A new mechanism of Kähler moduli stabilization in

type IIB theory
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Abstract: We study the scalar potential in supersymmetric (orientifolded) Calabi Yau

flux compactifications of Type IIB theory. We present a new mechanism to stabilize all

closed string moduli at leading order in α
′

by consistently introducing fluxes. As usual

we consider the dilaton and the complex structure moduli stabilized by turning on three-

form fluxes that couple to the F-part of the scalar potential. The Kahler moduli get fixed

by the combined action of the flux-induced scalar masses with the magnetic fields of the

open string sector, and Fayet-Illiopoulos terms. For supersymmetric three-form fluxes the

model is N = 1, otherwise the mass terms are the scalar soft breaking terms of the MSSM

fields. For the case of imaginary self dual three-form fluxes (ISD), the mass terms are

positive and the minimum of the potential is at exactly zero energy. We argue that, under

generic assumptions, this is a general mechanism for the full stabilization of closed string

moduli. The vacua depend explicitly on the fluxes introduced in the manifold. A concrete

realization of this mechanism for type IIB on a ( T 6

Z2×Z2
) orientifold is provided.
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1. Introduction

The problem of stabilization of moduli fields in string theory (scalar fields with flat direc-

tions in the potential) has been extensively studied, see for example [1 – 8, 10 – 15], since

it has important theoretical and phenomenological consequences. From the experimental

point of view the existence of such massless fields should be observed in fifth force exper-

iments,1 but since it is not, the consistency of the theory requires such fields to acquire a

mass. Cosmological observations also impose constraints on the moduli fixing scale to re-

produce reheating at the inflationary epoch, having as a lower bound 100 TeV. The moduli

fields come from two different sectors: closed and open string sectors. Moduli associated

to the closed string sector give information about the size (Kähler moduli) and the shape

(complex structure moduli) of the compact manifold, and also the dilaton. Moduli as-

sociated to the open string sector correspond to the presence of Wilson lines and to the

parametrization of the position of D-branes in those cases when they are present, in the

transverse dimensions.

A relevant result found in [3] showed that a linear combination of RR, and NSNS

three-form fluxes on IIB theory were able to stabilize the dilaton and the complex struc-

ture moduli. This mechanism presented a great advance in the resolution of the problem

although the Kähler moduli remained unfixed. The basic reason for this is due to the

superpotential. It does not contain any dependence on the Kähler moduli, leading to a

no-scale scalar potential at leading order in α
′

. In [4] KKLT found a way to fix one overall

1I would like to thank J. Conlon for this remark.
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Kähler modulus by using non perturbative mechanisms such as condensation of gauginos or

instanton effects. This led to an Anti De-Sitter (AdS) vacuum in a particular compactifica-

tion manifold. By explicitly breaking supersymmetry through the introduction of anti-D3

branes and by fine tuning fluxes, they were able to lift it to a de Sitter vacuum. de Sitter

vacua have acquired great importance due to the recent data that suggest the acceleration

of the universe and also because of their close relationship with the inflationary scenario [5].

New advances in the context of the landscape have been achieved by Douglas et al. [6]

obtaining manifolds with all moduli fixed through non-perturbative mechanisms and able

to lead to a static cosmology. These last advances, although significant, have not been able

to provide for realistic compactification manifolds. A potential problem in generating non-

perturbative superpotentials from strong infrared dynamics is that it is model dependent.

It can also generate too much massless charged matter.

In [16] the model of KKLT was improved. They induce a supersymmetric model where

one Kähler modulus is present by introducing magnetic fluxes contained on D7 branes.

Model building in this context has several fine-tuning and stability issues. In particu-

lar, the superpotential induced by the fluxes must be hierarchically small (< 10−4) in order

to obtain solutions with large volume in which the effective field theory approximation can

be trusted. On the other hand the fluxes must fix the dilaton at small string coupling to

suppress loop effects. Very recently some papers have appeared [7], see also [17], that find

a way to stabilize all moduli by considering the combination of α
′3 effects and non per-

turbative contributions to the superpotential, giving rise to a large volume AdS vacuum.

Its minimum is independent of the value of the flux superpotential. In this model super-

symmetry is broken by the Kähler moduli and the gravitino mass is not flux dependent

through the superpotential.

Here we propose a perturbative mechanism of moduli fixing which is fullfilled at the

supersymmetric minimum of the theory and it is able to lead to realistic descriptions with

all of the moduli fixed. In principle one could think that it is possible to induce any

other dependence in the superpotential by introducing branes in the model. However it

has been conjectured by [18, 19] that B-type branes (D-branes which wrap 2n-cycles with

magnetic fluxes and the type of branes interesting in IIB models) can couple to the Kähler

moduli only through Fayet-Illiopoulos (FI) terms. Several other works have also studied

this problem. We will consider a IIB theory compactified on Calabi-Yau (CY) orientifolds,

with RR, NSNS 3-form fluxes and magnetic fluxes. Three-form fluxes couple to the three

cycles via the superpotential associated to the F-term, which does not depend on the

Kähler moduli. We show that taking into account the coupling of the 3-form fluxes to the

open string sector of magnetized D-branes which leads to flux induced mass terms, i.e.µ-

terms or soft breaking terms with magnetic fields, together with FI terms gives a scalar

potential which stabilizes the Kähler moduli. This mechanism is model independent and

we think that it is a generic procedure for stabilizing moduli in a manifold. One advantage

of this method is that by being supersymmetric or breaking spontaneously supersymmetry,

it can be put in the 4D standard supergravity form and it keeps control over the types

of interactions that can be induced. In a previous paper [20, 21] a method was proposed

to stabilize some Kähler moduli through the coupling of fluxes to the FI-term in order
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to fix the blow-up moduli of the model. In that case the expected soft breaking term

contribution did not include magnetic fields and failed in the attempt of stabilizing the

full Kähler moduli. This idea is an extension of that one including magnetic fields in

the configurations. In [22], in a different approach, they also consider mass terms as a

mechanism to stabilize moduli.

In [23, 24] a type I theory was proposed with three-form fluxes and magnetic fluxes.

They claim that they are able to stabilize Kähler moduli just through FI-terms. We argue

that what they find does not constitute a true stabilization of the moduli since the moduli

are free to acquire any other vev without any energy cost. To stabilize Kähler moduli it is

necessary to also have a coupling of fluxes to the open string sector.

The paper is organized as follows: in section 2 we give a brief summary of three-form

flux stabilization. We show how a linear combination of three form fluxes stabilizes com-

plex structure moduli and the dilaton under very general assumptions. Non perturbative

mechanisms are used to stabilize Kähler moduli. In section 3 we review how soft terms

appear. We particularly focus on the flux induced soft breaking terms with magnetic fields

and we find a general expression for these terms in a toroidal orientifold generalizing to

the case when all Kähler moduli are different. In section 4 we describe D-term super-

symmetry breaking. FI terms that couple to B-type branes represent a deviation from

the supersymmetry conditions for the branes and a shift in the value at which the moduli

have a supersymmetric value. However a proper recombination mechanism can restore the

supersymmetry. In section 5 we propose the mechanism for stabilizing moduli without

introducing non perturbative mechanisms and we describe in detail the minimization of

the scalar potential. In section 6 we provide a concrete realization of this mechanism (of

phenomenological interest) for the case of ISD three-form fluxes. We perform IIB com-

pactified on T 6/Z2 × Z2 × ΩR moduli stabilization and we indicate the explicit values at

which Kähler moduli get fixed. We conclude in section 7 with a discussion, summarizing

the main results.

2. Review of moduli stabilization

In type IIB theory on a Calabi-Yau manifold the closed string moduli content associated

to the geometry are: an axion-dilaton S, h11 Kḧaler moduli Ti parametrizing the CY3 size

and h21 complex structure moduli Ui parametrizing the CY3 shape, where h11, h21 are the

Hodge numbers characterizing the Calabi-Yau three-fold. The Kähler potential associated

to the closed string sector has, for toroidal compactifications where the metric factors are

into three two-by-two blocks, the following expression,

k2K(S,Ui, Ti) = −ln[S + S] −
h11∑

j=1

ln[Tj + T j ] −
h21∑

j=1

ln[Uj + U j]. (2.1)

Giddings, Kachru and Polchinski [3] introduced the methods to stabilize the dilaton

and complex structure moduli by turning on 3-form fluxes. In type IIB theory, strings can

have RR and NSNS 3-form field strengths, which can wrap dual 3-cycles labeled by A and
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B leading to quantized background fluxes,

1

4π2α′

∫

A
F3 = M

1

4π2α′

∫

B
H3 = −K (2.2)

where K and M are arbitrary integers. These forms allow consistent string compactifications

of generic orientifold CY3 manifolds. Fluxes also have some other interesting consequences:

they induce a warp factor in the metric that deforms the manifold and generates hierar-

chies [20], fix the moduli partially, and also give a mechanism to break supersymmetry in

a controlled manner by inducing soft breaking terms.

To understand the mechanism of the partial fixing of moduli we have to remark that

these fluxes generate a superpotential found by [25]

W =

∫

CY3

G3 ∧ Ω3, (2.3)

where G3 = F3 − SH3, with S the complex axion-dilaton of type IIB theory. Ω3 is the

unique (3,0) form of the Calabi-Yau threefold. The holomorphic three form Ω3 has a non-

trivial dependence on the complex structure moduli Ui. This superpotential is independent

of the Kähler moduli Ti. It gives the D = 4, N = 1 scalar potential

VF = expk2K(KIJDIWDJW − 3k2|W |2) (2.4)

Here I, J label all the above geometric moduli of the manifold.

The covariant derivatives are defined as DIW = ∂IW + k2∂IKW where K denotes the

Kähler potential and KIJ the inverse of the Kähler metric defined in terms of the Kähler

potential KIJ = ∂I∂JK.

This potential is of no-scale type (Λ = 0 at tree level in α
′

) since the Kähler dependence

on Ti cancels exactly the 3W 2 contribution. Since the potential is positive definite, the

global minimum of this potential lies at zero. The values of complex structure moduli and

the dilaton get fixed for the particular values at which the superpotential is minimized,

DiW = 0, where i runs over all fields except the Kähler moduli. The Kähler moduli

however remain unfixed as the superpotential has no dependence on them. The minimum

of the potential is supersymmetric if DT W = ∂IKW = 0 and non-susy otherwise.

The Kähler moduli have been stabilized by a different mechanism, namely non-pertur-

bative contributions that introduce an exponential dependence. This contribution together

with the one induced by fluxes gives the total superpotential

W = Wflux + A exp(−aT ) (2.5)

and generate a scalar potential which typically has an AdS minimum at a finite value of

T and a run-away behaviour at infinity. Several mechanisms for breaking supersymmetry

allow in principle this minimum to be lifted to a de Sitter vacuum, i.e. [4, 16, 26].

3. Soft breaking terms with magnetic fields

The low energy effective action can have susy-breaking soft terms coming from magnetized

or non magnetized configurations. Soft terms are operators of dim < 4 which do not induce

quadratic divergences that spoil the good properties of the N = 1 supersymmetry. They
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give mass to the superpartners of the SM fields, when spontaneous supersymmetry breaking

occurs. Their scale is expected to be not much above the electroweak scale. In fact when

they are induced through fluxes they are of the order of the flux scale. These soft terms

arise from the interaction of low dimensional D-brane charges induced on the D7 branes

with the background flux (see [27, 28]). The soft terms contain gaugino masses, trilinear

terms, and scalar masses of MSSM fields. Regarding the stabilization of Kähler moduli we

are only going to be interested in scalar masses since they are the dominant terms in the

expression. In this section we want to extend the results found in [29], (see also [30, 31])

to more general settings. Unless specified otherwise we will follow the notation of [29] but

extending their results to be valid for a general configuration of D-branes compactified on

toroidal orientifolds of type IIB theory on T 6/Z2 × Z2 × ΩR .

We consider a six torus factorized as T 6 = ⊗3
i=1

T 2
i , performing the quotient by Z2 ×

Z2 × ΩR symmetry as in [11], filled with D7 branes some of which are magnetized and

D9 branes carrying anti-D3 brane charges in the hidden sector to cancel RR and NSNS

tadpole conditions while preserving N = 1 supersymmetry. The magnetic constant field is

defined in terms of the wrapping number m of each stack of D7a branes transverse to the

torus i, and n which represents the units of magnetic flux.

mi
a

2π

∫

T 2

i

F i
a = ni

a (3.1)

F i
a is the world-volume magnetic field. For later convenience we define the following angles,

Ψi
a = arctan(2πα

′

F i
a) = arctan

(
α

′

ni
a

mi
aAi

)
(3.2)

Ai represents the area of the two torus. Open strings give rise to charged fields. There are

two types of states living on stacks of Dp-branes. Untwisted states are chiral fields coming

from open strings whose ends are attached to the same stack of branes and twisted sector

chiral fields those lying at two different stacks of magnetized Dp-branes. We are only going

to consider the twisted sector fields as they are the ones that have bosonic soft breaking

terms. From D7 brane twisted sectors D7i −D7j there are only chiral massless multiplets

denoted by C7i7j transforming in the bifundamentals of Gi × Gj , with Gi being the gauge

group associated to the enhanced symmetry of each stack of D7 branes. The low energy

dynamics of the massless fields is governed by a D = 4, N = 1 supergravity action that

depends on the Kähler potential, the gauge kinetic functions and the superpotential. The

moduli in this type of constructions, as already explained in [29], are {M,CI} with M the

closed string moduli and CI = {C7i , C7i7j}, where C7i

i are the moduli fields representing

the position of the D7i branes in the transverse T 2
i whereas C7i

j correspond to the presence

of Wilson lines turned on, in the two complex directions parallel to the D7i brane. In

the following we will not care about open string moduli since there are models of phe-

nomenological interest free of them, such as the one we propose in the last section. Closed

geometric moduli that appear in the 4D N = 1 supergravity action consist of the complex

dilaton

S = e−φ10 + ia0 (3.3)
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where a0 is the R-R 0-form and eφ10 = gs the string coupling constant; the complex

structure moduli Uj, j = 1, 2, 3, which are equivalent to the following geometrical moduli

for the case of toroidal compactifications,

τj =
1

e2
jx

(Aj + iejx.ejy) (3.4)

where ejx, ejy are the T 2
j lattice vectors, Aj is the area of the two-torus, which for the

particular case of the square T 2
j is equal to Aj = RjxRjy, and the dual angle is ϕi

a =

arctan( ni
aRix

mi
aRiy

). The geometric Kähler moduli ρi are described by,

ρj = Aj + iaj , (3.5)

where the axions aj arise from the R-R 4-form. However, as explained in [29 – 31] the

Kähler moduli field denoted by Ti, i = 1, 2, 3 are not equivalent to the geometric moduli

ρi, since its correct expression is

Ti = exp−φ10
AjAk

α′2
+ iai j 6= i 6= k (3.6)

and the gravitational coupling in D = 4 is GN = k2/8π with

k−2 =
M2

pl

8π
= exp−2φ10

A1A2A3

πα
′4

. (3.7)

The string scale is defined as Ms = 1√
α′

. We have chosen this type of compactification

for its simplicity: The moduli in this type of compactification are just the dilaton S,

three complex structure moduli associated to the relation between the radius of each tori

Ui, i = 1, ., 3 and three Kähler moduli associated to the size of each torus Ti, i = 1, 2, 3.

The Kähler potential contains the Kähler part K̂ associated to the closed string moduli,

M = {S, Ti, Ui}, and the Kähler part K̃ which is associated to the matter fields CI =

Φaa,Φab of the open string sector [29].

k2K = k2K̂ + k2
∑

IJ

K̃IJCICJ + k2
∑

IJ

ZIJ(CICJ + c.c) + · · · . (3.8)

The standard expression for the soft breaking terms found in [32] is

m2
I = m2

3/2
+ V0 −

∑

M,N

F
M

FN∂M∂N log(K̃IJ) (3.9)

in supergravity conventions with all quantities measured in Planck units. I = aa, ab, ba, bb

labels the different stacks of magnetized D7 branes. FM are the auxiliary fields of the

corresponding chiral multiplet ΦA which in general have the following expression

F
A

= k2 expk2K/2 KABDBW (3.10)

where ΦA = {M,CI} and as before CI = {C7i

j , C7i7j}. When a spontaneous breaking of

supersymmetry occurs, the auxiliary vevs acquire a vacuum expectation value. In this case

the supersymmetry breaking is produced by the presence of a non supersymmetric 3-form
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flux, (G3 containing a (0, 3) piece). The auxiliary fields are parametrized as

FS =
√

3Csm3/2 sin(θ) exp−iγs , (3.11)

F Ti =
√

3Ctiηim3/2 cos(θ) exp−iγi , (3.12)

such that
∑

i η
2
i = 1 and η and θ, the goldstino angle, control whether S or Ti dominate

the SUSY breaking. Here

C2 = 1 +
V0

3m2

3/2

(3.13)

m3/2 = exp1/2k2K W (3.14)

V0 = FmK̂mnFn − 3m2

3/2
(3.15)

and m3/2 denotes the gravitino mass and V0 the cosmological constant.

For the case of soft breaking terms induced by 3-form and magnetic fluxes, the expres-

sion becomes

m2
I = m2

3/2
+ V0 − 1/4F

M
FN∂M∂N ln(st1t2t3) +

3∑

i=1

(∂M∂Nνi)F
M

FN (ln(ui))

−1/2

3∑

i=1

F
M

FN∂M∂N (ln(Γ(1 − νi)) − ln(Γ(νi))). (3.16)

where the Kähler potential has the following form,

k2K = k2K̂ + k2
∑

IJ

K̃IJCICJ + k2
∑

IJ

ZIJ(CICJ + c.c) + . . . (3.17)

K̃ =
(st1t2t3)

1

4

2πα′
Π3

j=1u
−νj

j

√
Γ(1 − νj)

Γ(νj)
(3.18)

k2K̂ = − ln(s) −
∑

i

ln ti −
∑

i

ln(ui) (3.19)

with the conventions of [29]

s = S + S; ti = Ti + Ti; ui = Ui + Ui. (3.20)

k2 = 4πα
′

(st1t2t3)
−1/4, and ν̂i = 1

π (Ψi
ab) = 1

π (Ψi
b − Ψi

a), where Ψi
a = arctan(gaβi) with

βi =
√

sti
tjtk

and gi
a = ni

a

mi
a
.

∑
ν̂i = 0 trivially, which is the condition for two stack of D-

branes to preserve the same supersymmetry. The νi are computed in terms of ν̂i/π, such

that 0 < νi < 1 and
∑

i=1
νi = 2 as in [29]. Here νi = 1 + ν̂i/π iff ν̂i ≤ 0 and νi = ν̂i/π

otherwise. This last expression is closely related to the one in [29], although it has been

generalized to the case when all of the Kähler moduli are different.

Regrouping terms,

m2
ab = m2

3/2
+ V0 − 1/4F

M
FN∂M∂N ln(st1t2t3) +

∑
3

i=1
(∂M∂Nνi)F

M
FN (3.21)

(ln(ui) − 1/2Bi
0
(νi)) − 1/2

∑
3

i=1
Bi

1
(νi)F

M
FN (∂Mνi∂Nνi).
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The Bp are defined in terms of polygamma functions as,

Bi
0(νi) =

∂νΓ(1 − νi)

Γ(1 − νi)
− ∂νΓ(νi)

Γ(νi)
, (3.22)

Bi
p = ∂νBp−1(νi), (3.23)

and in terms of a useful analytical expression is

B0(z) = πcotan(πz) (3.24)

and its derivatives. Let us remark that this definition of Bp(ν)i is slightly different of the

one used in [29]. A special value of this function is at νi = 1/2 where Bi
k(1/2) = 0.

We finally obtain the following expression,

m2
ab = m2

3/2
+ V0 − 3/4C2m2

3/2
[1 + 1/4π2

3∑

i=1

(ln(ui) − 1/2Bi
0(νi)) (3.25)

[4Pi sin(2πΨi)ab − Qi sin(4πΨi)ab] + 1/8π3

3∑

i

Bi
1(νi)Qi(sin(2πΨi)ab)

2]

where sin(πΨi)ab = sin(πΨi)b − sin(πΨi)a. and the above variables P,Q are defined in

terms of goldstino angles,

Pi = sin2 θ + cos2 θ(η2
i − η2

j − η2
k) (3.26)

Qi = 1 − 2 cos2 θ{ηiηjcos(γi − γj) + ηiηkcos(γi − γk) − ηjηkcos(γj − γk)} (3.27)

+ sin(2θ){ηicos(γi − γs) − ηjcos(γj − γs) − ηkcos(γk − γs}

so they are sensitive to the particular choice of 3-form fluxes.

The expression for soft breaking mass terms can be finally expressed as,

m2
ab =

1

4
(1 + 3A)m2

3/2
+

1

4
(3 + A)V0 (3.28)

where

A ≡ −1/4π2

3∑

i=1

(ln(ui) − 1/2B0(νi))[4Pi sin(2πΨi)ab − Qi sin(4πΨi)ab] (3.29)

−1/8π3

3∑

i

B1(νi)Qi(sin(2πΨi)ab)
2. (3.30)

These results recover the ones of [29] by making appropriate substitutions for their

particular configuration and imposing t2 = t3. Although the Kähler part of the potential

K̃CC correspond to the twisted magnetized sectors, with the above definitions, the soft

terms at twisted, unmagnetized D72−D73 stacks are also correctly found due to appropriate

cancellations.
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4. D-term supersymmetry breaking

In this section we are interested in characterizing D-term behaviour in the presence of

B-type branes. The motivation is the following: in order to solve the problem of Kähler

moduli stabilization, naively we can think of finding a perturbative generalization of the

superpotential that contains Kähler moduli in its definition. However this seems not to be

possible. Kähler moduli are the moduli associated to the (1, 1) forms that naturally can be

thought of as being stabilized by magnetic fluxes living on D-branes. In general there are

h11 of them, being the h11 Hodge number counting the number of 2-cycles present in the

compactified manifold. The Decoupling Statement of Douglas e al. [18, 19] establishes that

Kähler moduli on Type IIB can only couple to B-type branes (i.e. Branes wrapping even

cycles) through Fayet Iliopoulos (FI) terms in the scalar potential. The mirror statement

of this on type IIA says that complex structure moduli can only couple to A-branes (branes

wrapping odd cycles (3-cycles)) through FI terms. This fact seems disappointing from the

perspective of finding a perturbative superpotential for Kähler moduli. Moreover this is a

common feature for the case of D-branes at singularities [18, 19].

In [35, 36] an N = 1 4D type IIA theory on T 6

Z2×Z2
orientifold with D6 branes at angles

was studied. In this section we will review the main properties. This model is dual to

magnetized D9 branes on type IIB theory with discrete torsion. Requiring supersymmetric

models imposes a condition between orientifold planes and D branes. On type IIA, in a

supersymmetric model each stack of D6 branes is related to the orientifold planes O6 by a

rotation in SU(3). The supersymmetry configurations imposes a condition on the angles θi

of the D6 branes with respect to the orientifold plane in the i-th direction of the two-torus,

which for the case they considered was,

3∑

i=1

θi = 0. (4.1)

This condition is equivalent to

3∑

i=1

arctan

(
χi

mi

ni

)
= 0, (4.2)

with Rxi, Ryi the radius of the i-th two-torus and χi =
Ryi

Rxi
the untwisted complex structure

moduli. This model is T-dual to a type IIB orientifolded theory with discrete torsion and

twisted Kähler moduli with the condition

∑

i

Ψi
a =

3π

2
(mod 2π), (4.3)

where we are using the convention for angles introduced in the preceding section, Ψi
a =

arctan( α
′

ni
a

mi
aAi

) in terms of the tori areas Ai. Ai are expected to couple open string modes

in the D9 branes on 2-cycles (B-branes) as Fayet-Illiopoulos (FI) term. This is the dual

version to the one indicated in [35]. In [39] it is explained that FI terms are proportional

to the deviation from the susy condition, giving an effective action proportional to the
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deviation,

∑

a

∫
dx4ξaDa (4.4)

where for small FI terms , [40], ξa = δ
∑

i Ψi
a = (

∑
i Ψ

i
a − susy cond.) and vanishes

for supersymmetric configurations of D-branes. Since Da =
∑Nb

b |φab|2 − |φba|2 + ξa, and

VD = 1

2
DaD

a then, the D-term piece of the scalar potential is then

VD =

Na∑

a

(
Nb∑

b

|φab|2 −
∑

b

|φba|2 + ξa

)2

, (4.5)

where |φab| represents the charged matter fields lying on an oriented string with ends

attached at two different stacks a and b. |φba| represents the matter fields at the intersection

of the same two stacks a and b with reversal orientation and has also to be considered.

Na, Nb are the number of parallel Dp-branes at each stack.

The dependence of the scalar potential on a φab matter field is

VD(φab) = (|φab|2 + 1/2ξa)
2 + (− |φab|2 + 1/2ξb)

2 (4.6)

where we have renamed for the second part of the R.H.S a → b and we have used that

|φba|2 = − |φab|2 and the mixed term which gives a mass term for |φab|

|φab|2 (ξa − ξb) = |φab|2 δΨab, (4.7)

defining δΨab = ξb − ξa and approaching (δΨab)
2 ∼ 1

2
(ξ2

a + ξ2
b ), we arrive to the familiar

expression for D-terms appearing from twisted sector, [40]:

VD =
∑

I

(qI |CI |2 − δΨI)
2 (4.8)

where I runs over all the indices of the matter field , i.e, aa, ab, ba, bb. qI are the charges

of the matter fields under the U(1) gauge group of the D7 branes, with qaa = 0, qab =

−qba, qab = +1, 0,−1; and CI = φaa, φab are all of the open string moduli. The FI terms

appear always when there are supersymmetry breaking coming from the 2-form magnetic

fluxes. In standard type IIB orientifolded actions the FI terms can be properly tuned

by adjusting the twisted moduli. Physically this term reproduces at leading order the

splitting between scalar and fermion masses [35]. Namely in the ab sector, chiral fermions

remain massless at tree level while their scalar partners obtain a mass proportional to

δνab = 1

π

∑
i(Ψ

i
a − Ψi

b).

An important remark regarding supersymmetry is the following: In [35] it has been

pointed out that since some of these scalar fields can acquire vevs, the existence of a FI

terms by itself does not automatically imply a susy breaking since they may acquire them

so as to make the D-term vanish. Physically it is due to a recombination process of the

D6 branes -in type IIA picture- (which now are not supersymmetric since the angles have

changed) into supersymmetric smooth 3-cycles. This process gives a vev to some of the

scalar fields φab, at the intersection.
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In the type IIB picture, the argument remains valid. D9 branes have magnetic fields at

supersymmetric values. In the presence of non-vanishing FI terms the D9 branes become

non susy, but if some scalars acquire mass cancelling D-term contribution, then they change

their magnetic values on the 2-cycles restoring supersymmetry.

It has also been argued that although the existence of a FI-term in local compactifica-

tions allows for supersymmetry breaking, for the case of global compactifications recombi-

nation processes seem to be a generic mechanism to restore supersymmetry.

As already mentioned in the introduction, in [23, 24] a mechanism was proposed to

stabilize Kähler moduli through three-form fluxes and magnetic fluxes. The argument was

that the Kähler moduli get fixed at its supersymmetric value since the supersymmetry

condition for magnetized D-branes depends explicitly on them. However, because of the

argument above, this is not a true stabilization since matter fields can acquire a vev without

any energy cost to cancel the D-term contribution, modifying the value of the twisted

moduli. Then the scalar potential has a flat direction with V = 0.

5. A new mechanism of moduli stabilization

We are going to consider a decoupling approach where complex structure moduli and the

dilaton have been stabilized by the standard mechanism. Turning on suitable three-form

fluxes stabilizes their vevs and allows their dynamics to be integrated out as in [4]. This

approach is valid in the regime when the mass scale of the Kähler moduli is much less

than that of the dilaton and the complex structure moduli. The warping induced by the

fluxes will be negligible in the approximation of large volume. We propose the following

mechanism to stabilize the Kähler moduli perturbatively: We consider the coupling of

fluxes (3-form fluxes and magnetic ones) to the open string sector that induce bosonic flux

induced masses. These mass terms in principle can be soft breaking terms or supersym-

metric. Supersymmetric mass terms are the µ terms appearing in the superpotential when

supersymmetric 3-form fluxes (2,1) are turned on and the D-brane stacks share at least

one parallel direction [31, 38]. These flux induced masses m2
I for magnetized D-branes

combined with the FI contribution represent a new coupling in the scalar potential that

lift the flat directions of the potential giving masses to all the moduli. This fact will hap-

pen generically when soft masses are present but as remarked above, for supersymmetric

masses to exist on susy flux-backgrounds, only very specific configurations will be allowed.

The effective scalar potential in D = 4 taking into account the F-piece and the D-piece of

the potential is equal to

VT = V back
F + flux induced mass terms + FI = (5.1)

= V back
F +

∑

I

m2
I |CI |2 +

∑

I

(qI |CI |2 −
∑

i

δΨi
I)

2, (5.2)

where V back
F is the background no-scale potential induced by the superpotential. Flux

induced mass terms have the effect of lifting the flat directions in the potential. These

terms can be positive or negative. For the case of ISD G3 the mass terms are positive and

V is also positive definite. We will see that there exists a global minimum of the potential
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V that fixes all of the moduli. In order to minimize this potential we should consider

the minimization with respect to every moduli CI ,M . It is important to ask whether the

resulting critical point is a saddle point or a minimum. The answer is that iff there exist

a critical point such that VT = 0, being VT definite positive, then this point is a global

minimum of the theory and in this case it corresponds to its supersymmetric value. (The

supersymmetric minimum in fact corresponding to F-flatness and D-flatness condition)

since it is bounded from below to a value greater or equal than 0. We find the value of this

minimum at |CI | = 0,
∑

i δΨ
i
I = 0.

Let see it in more detail. To see the stabilization we need to minimize the potential

with respect to the full moduli CI ,M , since the flat directions were associated in [35] to

the presence of matter fields which did not acquire a vev. As explained before, the non-

vanishing of the FI term represents a shifting from the supersymmetric condition associated

to the D-brane configuration
∑

i δΨ
i
I 6= 0. As we are interested in stabilizing Kähler moduli

on type IIB, then we are going to impose that the flux induced terms have to be associated

to the presence not only of 3-form fluxes but also of magnetic fields which depend explicitly

on the Kähler moduli. The presence of magnetic fluxes gives an extra dependence of the

intersecting angles
∑

i δΨ
i
I on the Kähler moduli.

The superpotential is not renormalized at any order in perturbation theory and receives

no α
′

corrections from the bulk, however it could receive from brane contributions [37].

The D-term, by an appropriate selection of fluxes, can leave the model supersymmetric and

so will not receive corrections changing its structure. Moreover, if we analyse the equation

we can see that this holds generically given m2
I > 0 (as we will see this is the case for the

interesting ISD 3-form fluxes).

We have in principle two kinds of flux contributions, ISD fluxes and IASD fluxes. We

do not consider interaction terms between them. Since IASD fluxes do not solve type

IIB 10D equations of motion unless non-perturbative effects will be taken into account,

we will not consider them in the analysis. In the presence of ISD fluxes only, as pointed

out in [28], soft terms are positive. The argument relies in the following : they can be

regarded as geometric moduli of the F/M-theory fourfold and generate positive definite

scalar potential. In [41] it is argued that this is a general property of ISD fluxes also valid

in the case of magnetic fluxes at the intersections.2 A way of illustrating this point is that

for the case of soft breaking terms with magnetic fluxes, the superpotential

W =

∫

CY4

G4 ∧ Ω4 (5.3)

leads to a positive definite scalar potential. W in particular includes D7-brane geometric

moduli [34], which in this case are described in terms of the homological charges also coming

from the magnetized D-branes.

For the case of ISD fluxes, the V TT
F = 0 since it is a no-scale potential (DT WDT W =

3 |W |2), then extremizing with respect to the moduli TN gives the equation

∂NV = 0 →
∑

I

(−2qI |CI |2∂NΨI + 2(δΨI)∂NΨi + (∂Nm2
I)|CI |2) = 0. (5.4)

2We thank L. Ibanez for helpful clarifying explanation at this point
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Minimizing with respect matter field gives as solution

|CI | = 0, V (CI) = |δΨI |2 (5.5)

|CI | = ±
√

2qIδΨI − m2
I

2q2
I

, VD(|C2
I |min) =

m2
I

4q2
I

(4qI(δΨI) − m2
I). (5.6)

The first solution imposes in this model that the global minimum lies at δΨI = 0, fixing the

moduli through the dependence of ΨI to its supersymmetric value iff soft terms > 0 for all

I. The value of the minimum of the potential corresponds for supersymmetric configuration

of D-branes, to a no-scale potential (V = 0), and in those cases when supersymmetry can be

consistently broken through the FI term to a de Sitter minimum, in the same spirit as [16].

The other two extrema lead to an AdS vacua and they are only possible in those cases when

|CI | is real, that correspond to have negative squared mass terms for the supersymmetric

case, m2
I < 0, so it is not possible for ISD G3 fluxes or to have 0 < m2

I < 2
∑

I qIδΨI for

a non trivial FI term. Assuming that
∑

I qIδΨI > 0 one can see that m2
I ≥ 2

∑
I qIδΨI

always. The bound is never saturated unless ν = 1/2, ui = 1, s ∼ 10−3 3 and these values

do not allow to have consistent flux compactifications on this background compatible with

tadpole cancellation conditions, so these other two possibilities are never achieved nor by

making fine tuning of fluxes. The unique minimum is at CI = 0.

To be sure that critical points are not saddle points if we were interested in these cases

associated to IASD fluxes, ( that we are not), we should perform the Hessian calculation

-very involved due to the higly non-trivial structure of the VT - , including also the F-part

of the potential that is no longer vanishing.

One could also ask whether trilinear couplings of the soft terms could change this

behaviour. The answer is not for the particular case we are considering, i.e. ISD fluxes. let

see it in more detail. The full structure of the soft and susy terms is rather complicated.

Generically,

soft terms =
1

2

∑

a

(Maλ
aλa + h.c.) +

∑

I

m2
I |CI |2 + (5.7)

∑

I,J,K

AIJKCICJCK + 1/2BIJCICJ + h.c. (5.8)

where λa represents gaugino mass terms, mI are the scalar mass terms and there are

bilinear and trilinear couplings each of which with a highly nontrivial dependence on all

of the moduli. However one can see that all of the induced mass that appear in the

scalar potential are polynomial of lower bound 2 in the matter fields CI , hence, as before

CI = 0 is still an extrema, and as before δ
∑

I Ψi = 0 corresponds to VT = 0 which is the

global minimum of the theory. Moreover, the expression for the trilinear terms in this case

corresponding to W = Wflux is the following,

AIJK = FMK̂M − ∂M log
(
K̃IIK̃JJK̃KK

)
(5.9)

3I would like to thank G. Tasinato for his comments regarding this point.
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trilinear terms can be estimated as AIJK ∼ 1/2(m3/2 − ∑
i 1/νi) ≤ 1/2m3/2 and scalar

mass terms m2
I ∼ m2

3/2
(1/4+3/4(−1/

∑
i 1/νi +

∑
i

1

ν2

i

)) ≥ 1/4m2

3/2
. As before one can ask

if there exists an appropiate fine tuning in the configuration of D-branes and in the choice

of 3-form fluxes in such a way that for a particular configuration of brane case the other

two minima will be CI = 0 with a FI 6= 0, giving VT = 0 and the answer is that again

it seems not possible. Both bounds are saturated for νi = 1/2 which corresponds to the

case cosidered above that leads to non physical solution in these set-ups. Scalar soft terms

are the dominant contribution. An important clue in this result is the fact that the whole

mass terms are positive defined for ISD G3. Otherwise there could also other solutions

corresponding to have VT < 0, and in those cases a careful analysis should be performed.

In the absence of magnetic fluxes moduli can not be fixed since ΨI is independent

of them. However as already shown in the preceding section the presence of magnetic

fluxes does not by itself imply the stabilization of Kähler moduli, as we already explained,

as matter fields are free to acquire any vev to cancel D-term contribution leaving Kähler

moduli unfixed. We want to emphasize that only when there are magnetic fluxes in the

3-form flux induced soft (susy) 4 breaking terms combined with the FI term, the Kähler

moduli get fixed. This contribution coupling to the FI-term, prevents matter fields from

acquiring a vev cancelling this contribution as it is energetically disfavoured.

This is then a generic mechanism, in the same way that 3-form fluxes H3, F3 serve to

stabilize the complex structure moduli (2, 1) and the dilaton through the superpotential.

The magnetic fluxes given by a particular configurations of the magnetized D-branes fix

the Kähler moduli (1,1) at their supersymmetric values, only once the potential has no flat

directions. These directions are lifted by the combined action of these 3-form flux-induced

soft terms with magnetic fields, and the FI-terms. We think that this solution gives a final

answer to the question of perturbative stabilization of moduli. Both types of moduli need

to be present to achieve a model without moduli. The scale of stabilization of the moduli

vevs is at supersymmetric values. The mass scale of the moduli however depends on the

model considered, and is given by the scale of the flux induced terms.

All of the previous discussion in principle remains valid for the case of susy flux induced

terms, i.e. mass terms with the same masses for fermions and their scalar superpartners (it

has been obtained in D-brane action calculations, see for example, [27], and F-theory [33,

34].). These susy mass terms, however do not appear always that there are three form fluxes

ISD (2,1) [31], it is needed a D-brane configuration with at least two chiral multiplets such

that they are at least parallel in one direction to generate µ-terms. To have a true N = 1

model it is also needed masses for all of the moduli present in the configuration, allowing

to obtain at the same time non-trivial areas. If such a model is provided then it constitutes

a model with Kähler moduli stabilized. This implies that for a supersymmetric model,

whenever the induced flux mass terms are all positive, which is the case for ISD fluxes, the

matter fields are going to be fixed at zero. Spontaneous susy breaking will lift this value to

the lowest metastable de Sitter vacua once the Kähler moduli have been stabilized by the

4This mechanism is also valid for supersymmetric masses generated by similar mechanisms whenever

appropiate configurations are considered.
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supersymmetric condition. In both cases ( non-susy and susy) this result is very appealing

since it is valid for the ISD fluxes which are the ones we are interested in since they solve

the 10D equations of motion in type IIB theory. From the calculational point of view, they

stabilize the Kähler moduli for a given Dp-brane content without the need to specify a

detailed expression for the highly complicated soft terms. We provide an explicit example

in the last section of the paper.

5.1 Beyond imaginary self-duality condition

In general for IASD fluxes or a combination of both, the contribution of VF has to be taken

into account but this does not change the behaviour of the stabilization. The two possible

extra extrema are

|CI |2 =
2qIδΨI − m2

I

2q2
I

(5.10)

For a susy model this reduces to:

V (|CI |2min) = −|mI |4
4q2

I

< 0 iff m2
I < 0 ∀I. (5.11)

The minima of the potential correspond to a AdS vacua. For the case of negative bosonic

soft terms only very rough approximations to the stabilized values can be done because of

the complicated equation to solve. Moreover the Kähler potential cannot be simplified so

much since the bilinear Zij has to be calculated. This case can appear when IASD fluxes

are taken into account. The explicit value at which Kähler moduli get fixed now it is going

to be determined by the explicit expression of the flux induced mass terms, that one for

the soft terms (see section 4) is highly nonlinear. On the other hand IASD fluxes do not

solve the equations of motion in this description since it is purely done at perturbative level

( the situation changes if non-perturbative mechanisms are taken into account), and they

generate poorly understood run-away potentials. We will not perform the calculation.

6. An example of IIB on T 6

Z2×Z2×ΩR

In this section we provide a concrete example of phenomenological interest which realizes

the new mechanism proposed in the preceding section. Some examples of flux compactifi-

cations of phenomenological interest are [45, 46]. See also [47], in which some of the flux

compactifications of phenomenological interest are able to lead to KKLT models.

In the following we will review the main features of the constructions of [11, 43] which

are a global embedding of the local model proposed in [44] and used in [29]. We will then

construct our explicit realization.

The model of [11, 43] is based on type IIB string theory compactified on a T 6

Z2×Z2

modded out by the orientifold action, which has also been examined in[42]. We consider

T 6 = Π3
i=1

T 2
i . The generators of the orbifold symmetries Z2 ×Z2 are θ, ω which act on the

complex coordinates of the tori as

θ : (z1, z2, z3) → (−z1,−z2, z3), (6.1)

ω : (z1, z2, z3) → (z1,−z2,−z3). (6.2)
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The orientifold action is given by ΩR where Ω is the usual world-sheet parity and R :

(z1, z2, z3) → (−z1,−z2,−z3). This model contains 64 O3 planes each one on a fixed point

of R and 4 O7i planes, located at the Z2 fixed points of the i-th T 2 and wrapping the other

tori. We consider the case of intrinsic torsion as in [46]. The open string sector contains D9

branes with non trivial magnetic fluxes. The non-trivial gauge bundle generically reduces

the rank of the group and upon KK reduction leads to D=4 chiral fermions. The magnetic

fluxes also induce D-brane charges of lower dimension that contribute to the tadpoles.

Magnetized D9 branes usually have D7, D5 and D3 charges. As explained in [42] the

topological information of these models is encoded in three numbers. (Na, (n
i
a,m

i
a)) where

Na is the number of D9 branes contained on the a-stack, mi
a is the number of times that

a-stack of D-branes wrap the i-th T 2 and ni
a is the units of magnetic flux in that torus

induced by D-branes. The unit of magnetic flux of the D-branes in that torus, as seen in

section 3, is

mi
a

2π

∫

T 2

i

F i
a = ni

a. (6.3)

The D9a branes preserve the same supersymmetry of the orientifold planes provided

that

3∑

i=1

Ψi
a =

3π

2
(mod 2π), (6.4)

with πΨi
a = arctan

(
ni

aβi

mi
a

)
, (6.5)

where no summation over index i is performed. This condition also guarantees that any

two sets of branes preserve a common supersymmetry since the relative angles

θi
ab = Ψi

b − Ψi
a (6.6)

trivially satisfy

∑

i

θi
ab = 0 (mod 2π). (6.7)

In the case of a global analysis we need to add new branes which are expected to be in a

hidden sector in order to cancel global tadpoles [42]. The conditions are,

1)
∑

α

Nαn1
αn2

αn3
α + 1/2Nfluxes = 16 Nmin = 8 with torsion (6.8)

2)
∑

α

Nαmi
αnj

αmk
α = −16 i 6= j 6= k and i, j, k = 1, 2, 3 (6.9)

with Nflux = 64.n n ∈ Z. Global cancellation of Z2 RR charges must also be imposed to

cancel the contribution of D5i −D5i and D9i −D9i pairs, which is equivalent to satisfying
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the following conditions for a case with torsion,

∑

α

Nαm1
αm2

αm3
α ∈ 4Z (6.10)

∑

α

Nαni
αnj

αmk
α ∈ 4Z i 6= j 6= k and i, j, k = 1, 2, 3 (6.11)

and for the case without torsion the conditions are the same by making these changes,

∑

α

Nαn1
αn2

αn3
α + 1/2Nfluxes = −16 Nmin = 4 (6.12)

∑

α

Nαm1
αm2

αm3
α ∈ 8Z (6.13)

∑

α

Nαni
αnj

αmk
α ∈ 8Z i 6= j 6= k and i, j, k = 1, 2, 3 (6.14)

Let us focus on the case with torsion. The following model is a concrete realization that

serves our purpose.

MSSM

Nα (n1
α,m1

α) (n2
α,m2

α) (n3
α,m3

α) (Ψ1
α,Ψ2

α,Ψ3
α)

Na = 8 (1,0) (g,1) (g,-1) (π
2
, πδ2, π − πδ3)

Nb = 2 (0,1) (1,0) (0,-1) (0, π
2
, π)

Nc = 2 (0,1) (0,-1) (1,0) (0, π, π
2
)

Nh1
= 2 (-4,1) (-2,1) (-3,1) (π(1 − ϕ1), π(1 − ϕ2), π(1 − ϕ3))

Nh2
= 2 (0,1) (-5,1) (-4,1) (0, π(1 − φ2), π(1 − φ3))

8Nf (1,0) (1,0) (1,0) (π
2
, π

2
, π

2
)

(6.15)

This includes a slight modification to the proposal of [46] since their configuration was

not able to fix all of the Kähler moduli. In fact the spectrum keeps its interesting phe-

nomenological properties except for the number of families which depend on the particular

homological charges chosen. To satisfy the consistency conditions the following equation

has to be solved,

4n + g2 + Nf = 8. (6.16)

It gives different flux vacua for the different possible replication of families Iab = Πi(n
i
am

i
b−

ni
bm

i
a). Searching for a realistic scenario it is necessary to obtain three family replication,

unfortunately a simple examination reveals that this model does not contain it. The

possible vacua are:

For g = 2

n = 0 Nf = 4 (6.17)

n = 1 Nf = 0 . (6.18)
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Intersection Matter fields Rep QB−L Y

D71 − D72 QL 3(3, 2) 1 1/6

D71 − D73 UR 3(3, 1) -1 −2/3

D71 − D73 DR 3(3, 1) -1 1/3

D71 − D72 EL 3(1, 2) -1 1/2

D71 − D73 ER 3(1, 1) 1 −1

D71 − D73 NR 3(1, 1) 1 0

D72 − D73 H (1, 2) 0 1/2

D72 − D73 H (1, 2) 0 −1/2

Table 1: Chiral spectrum of the MSSM-like model.

For g = 1

n = 0 Nf = 7 (6.19)

n = 1 Nf = 3 . (6.20)

To illustrate our example we choose the vacua for g = 1, containing fluxes, i.e. n = 1, Nf =

3.

Spectrum. Locally the spectrum of this model can contain the MSSM since g is not

constrained. This has been studied in [44]. This sector is called the visible sector. We

show it in table 1 as a remainder.

However the global completion imposes constraints in such a way that g 6= 3 so it is

not possible to obtain 3-family replication and in that sense, we are proposing is a toy

model although it keeps the nice properties of chiral matter, correct quantum numbers,

etc. It contains the intersection of the so-called, visible sector and the hidden sector and

hidden-hidden sector. We analyze the full spectrum in terms of a Pati-Salam model (see

table 2).

Some linear combinations of U(1) will leave U(1) fields massive in a Green-Schwarz

mechanism but since our purpose is to show the perturbative stabilization of moduli we

have not included them in the spectrum calculation. We show that a realization of string

compactification on a CY3 orientifold with some phenomenological properties render the

moduli fixed.

When we substitute for the supersymmetry conditions,by taking the values of table

(6.15) in (6.4), we obtain the following equations

δ2 = δ3 → t2 = t3, (6.21)

π(ϕ1 + ϕ2 + ϕ3) =
3π

2
, (6.22)

π(φ2 + φ3) =
π

2
. (6.23)

Using (6.5) a straightforward calculation gives

β1 = 0.157, β2 = β3 =
1√
20

(6.24)
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Sector Matter SU(4)xSU(2)xSU(2)xUSp[24] Qa Qh1
Qh2

Q
′

(ab) FL (4, 2, 1) 1 0 0 1/3

(ac) FR (4,1,2) -1 0 0 -1/3

(bc) H (1,2,2) 0 0 0 0

(ah1) 6(4, 1, 1) -1 -1 0 5/3

(ah
′

1) 4(4, 1, 1) -1 -1 0 5/3

(ah2) 18(4,1,1) 1 0 -1 -5/3

(ah
′

2) 20(4,1,1) 1 0 -1 -5/3

(bh1) 12(1,2,1) 0 -1 0 2

(bh
′

1) 12(1,2,1) 0 -1 0 2

(ch1) 8(1,1,2) 0 -1 0 2

(ch
′

1) 8(1,1,2) 0 -1 0 2

(h1h
′

1
) 288(1,1,1) 0 -2 0 4

(h1h2) 12(1,1,1) 0 1 1 0

(h1h
′

2
) 196(1,1,1) 0 1 1 0

(fh1) (1,1,1)x[24] 0 -1 0 2

(fh2) (1,1,1)x[24] 0 0 -1 2

Table 2: Chiral spectrum of a one generation Pati-Salam N = 1 chiral model of table 1. The

abelian generator of the unique massless U(1) is given by Q
′

= 1

3
Qa − 2(Qh1

− Qh2
).

which means that the vacuum expectation value at which Kähler moduli gets fixed is,

t1 = 20s, t2 = t3 = 127.4s, (6.25)

where s denotes the vacuum expectation value of the dilaton which is the string coupling

constant. Substituting in the value of areas (3.6) this means that

A1 = 6.38α
′

A2 = A3 = 4.47α
′ (6.26)

This mechanism implies that for this toroidal compactification, are needed three and only

three stacks of D-branes with different magnetic fluxes in such a way that lead to different

equations in order to have a determined compatible system of equations. This is the

subtlety that does not allow us to use Marchesano et al.’s model in our mechanism as

an example of D-brane configuration since they have just two different equations. This

construction is in no way unique, and represents a toy model to illustrate the mechanism

of stabilization. We expect that more complicated models can be constructed with realistic

spectrum and with all of the moduli fixed.

Regarding the blow-up moduli associated to the orbifold fixed points, they are going to

be also stabilized with this mechanism since for models with intrinsic torsion, the moduli

are Kähler, and can get fixed in the same way as it was done in [20]. With the above

results we can perform the explicit calculation of soft mass terms for a given three-form
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flux configuration with complex-structure moduli and dilaton stabilized. We choose the

one [12] for n = 1, Nflux = 64 with N = 0 supersymmetry

G3 = 2(dz1dz2dz3 + dz1dz2dz3 + dz1dz2dz3 + dz1dz2dz3), (6.27)

W = 8(u1u2u3 − s). (6.28)

The complex-structure moduli and the dilaton are stabilized at ui = s = i, which in

our notation is equivalent to ui = s = 1. This values lead to a non-acceptable value for

perturbative analysis since gs = 1 as explained in [43]. However we will use this to give an

example of explicit calculation of the soft terms. The soft terms from T-dominance (ISD)

fluxes correspond to V0 = 0. The gravitino vev is

m2

3/2
=

|W |2
sΠitiui

(6.29)

and we have made C = 1, cos(θ) = 1, ηi = 1/
√

3, γi = γT as is explained in detailed in [29].

The soft breaking terms for this model are:

m2
ab = 375, 2m2

3/2
m2

ac = 7, 8m2

3/2
m2

bc = 1

4
m2

3/2

m2
ah1

= 120, 2m2

3/2
m2

ah2
= 58, 5m2

3/2
m2

af = 16, 9m2

3/2

m2
bh1

= 79, 9m2

3/2
m2

bh2
= 222, 3m2

3/2
m2

bf = 1

4
m2

3/2

m2
ch1

= 125, 6m2

3/2
m2

ch2
= 225, 2m2

3/2
m2

cf = 1

4
m2

3/2

m2
h1h2

= 244, 8m2

3/2
m2

h1f = 39, 4m2

3/2
m2

h2f = 30, 5m2

3/2

(6.30)

in terms of gravitino mass m3/2. Since the microscopic source of SUSY-breaking is the

above ISD flux in a toroidal setting, by using the above definitions, |W |2 = 256, and

the gravitino mass is m3/2 = 0.019, so the soft terms have unrealistic values as they are

extremely high.

For general toroidal/orbifold models with intersecting D6-branes the flux-induced soft

terms are typically of the order of the string scale (1/α
′

), which is only slightly smaller

than MP l and not able to solve hierarchy problems [29]. This fact is due to the simplicity

of the compactification manifolds as well as the fact that fluxes are distributed uniformly.

7. Discussion and conclusions

We have shown a new method to dynamically stabilize, with fluxes, all moduli in super-

symmetric and non supersymmetric models. In supersymmetric models we have explained

that the mechanism is restricted to particular configurations able to generate µ terms for

all of the moduli, i.e. configurations of stacks parallel to each other in at least one direc-

tion in which a suitable (2, 1) G3 flux has been turned on. Three-form fluxes generically
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stabilize the dilaton and the complex structure moduli. They generate an F-term part of

the scalar potential. Magnetic fluxes are two forms that fix Kähler moduli at their super-

symmetric value once the potential has no flat directions. This goal is achieved by inducing

through 3-form flux a non-susy (susy) breaking (flux-induced) mass terms with magnetic

fields in the scalar potential, that combined with the FI term lift the flat directions. We

think this is a generic mechanism that gives a final answer to the problem of perturbative

moduli stabilization. These mass terms avoid the possibility of cancelling the D-term by

the consistent adjustment of the matter fields vev, since it requires an energy cost. To

leading order, the F-part of the potential is a non-scale potential and together with D-

term are responsible for the stabilization of the Kähler moduli. ISD fluxes induce positive

mass terms and fix the Kähler value of the D-term to its supersymmetric value. In the

supersymmetric case it can be possible to implement a similar mechanism of the one found

in [16] to generate a de Sitter space (by spontaneous supersymmetry breaking ). However,

possibly toroidal models will be unable to generate adequate fine tuning to guarantee that

the different approximations are still valid (small cosmological constant, small quantum

corrections, a big potential barrier). Maybe this mechanism combined with the one of [16]

could be implemented in a more complicated model (it is necessary that U(1)’s of the

FI term will not be charged or the matter will have some special properties that are not

present in the case considered). For the case m2 < 0 both parts of the potential, F- and

D-, including the supergravity potential V background
F contribute and an explicit calculation

in terms of the particular soft breaking terms is needed. They can be associated to IASD

or a combination of (IASD and ISD) fluxes. The analysis of IASD contribution has not

been performed as they do not lead to solutions of physical interest. The scalar potential

generically has two AdS minima.

Clearly the case with m2 > 0 which correspond to turning on ISD three form fluxes is

much more interesting since it solves the equation of motion and stabilizes the moduli at

a value of the order of the string scale which means that it does not depend on the scale

of supersymmetry breaking and is higher enough to induce reheating processes at early

stages of the universes. The mass scale of the moduli presumably is of the order of the

soft breaking mass scale (which is of the order of flux scale α
′

R3 ). We have given a concrete

Kähler moduli-free realization of phenomenological interest of Type IIB on T 6

Z2×Z2×ΩR .

However this model represents a toy model. We expect improvements in the search for

realistic compactifications moduli-free (i.e. three family generation, lower soft masses) in

more complicated scenarios as those with warped metrics due to throats, that are also able

to explain the hierarchy problem, as well as, address inflation.

Acknowledgments

I would like to thank to the referee for his/her comments that have helped me very much

to improve the paper. I want to thank J.L.F. Barbón, D. Cremades, J. Conlon, E. López,
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